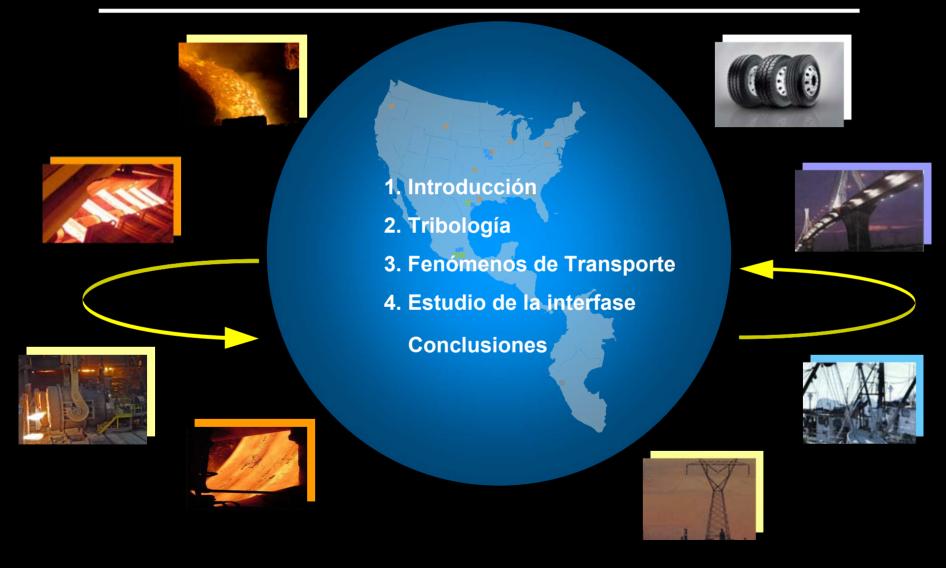


ACEROS CAMESA S.A de C.V

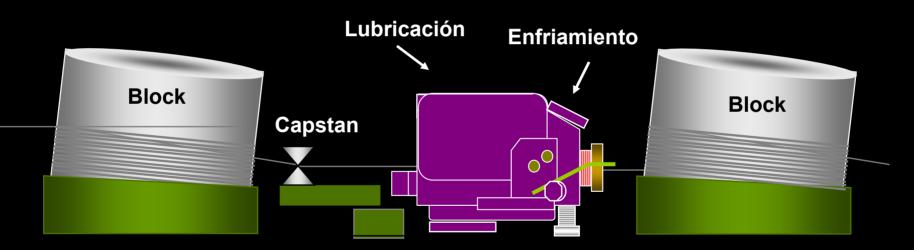
MPORTANCIA DE LA LUBRICACIÓN DURANTE EL TREFILADO

Ing. Guillermo Rangel Gutiérrez



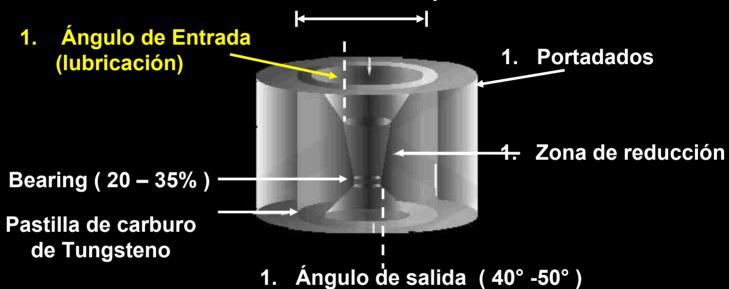
México, D.F; Septiembre 2007

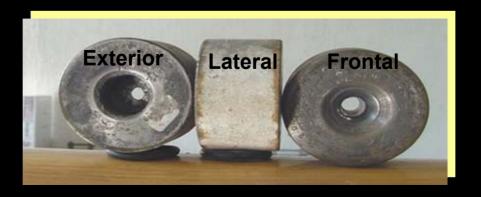
INDICE



INTRODUCCIÓN

Deformación plástica de un metal consiste en forzar un material a pasar a través de una herramienta (**dado**) con características geométricas predefinidas. La temperatura de trabajo es aprox. (100-200°C)

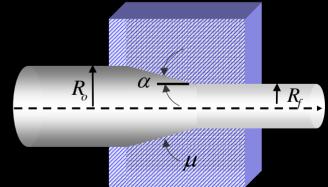




INTRODUCCIÓN

INTRODUCCIÓN

Objetivo:


Promover flujo homogéneo dentro de la zona de deformación; generando una fuerza opositora al proceso conocida como *Carga o Esfuerzo de trefilado.*

Carga de trefilado F (x):

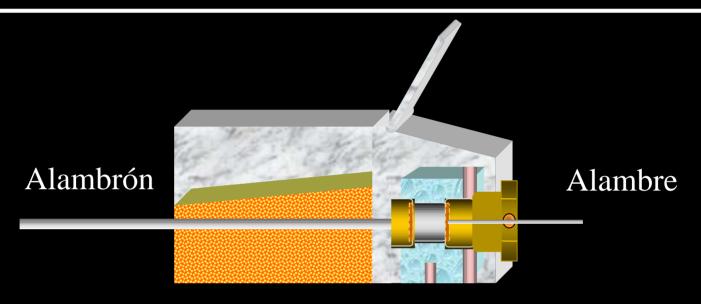
> Reducción en área

%
$$RA = 1 - \left(\frac{d_o}{d_i}\right)^2 * 100$$

- \triangleright Ángulo de dado (α)
- \succ Coeficiente de fricción (μ)

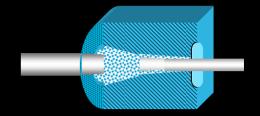
LUBRICACIÓN

Interposición entre dos superficies que se encuentran en movimiento relativo una con respecto de la otra de una sustancia conocida como **lubricante**.


El lubricante debe cumplir las siguientes funciones :

- > Controlar la fricción
- > Reduccir el desgaste
- > Aislar termicamente
- > Capaz de mantener el espesor de la capa en función de la temperatura generada a velocidades altas de deformación

LUBRICACIÓN


CONDICIONES DE DEFORMACIÓN				
VARIABLES DEPENDIENTES				
Esfuerzo de estiraje o tiro	% Reducción en área			
	Ángulo de entrada, reducción, etc.			
Estados de deformación	ormación Longitud del Bearing			
	Velocidad en el proceso			
Presión de los dados				
Temperatura generada (fricción)	Lubricación			

Composición de los lubricantes

Grasa animal + Sosa + Aditivos = Jabón

Aditivos: son modificadores de la viscosidad y el punto de ablandamiento

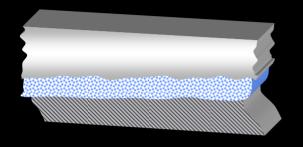
> Jabones Sódicos: soluble en agua $C_{17}H_{35}*COONa$

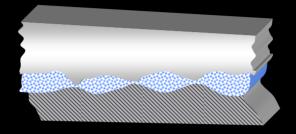
- Contenido alto en grasas
- •Bajo contenido en aditamentos

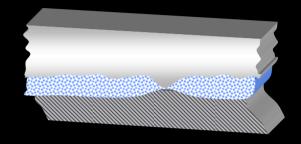
CLASIFICACIÓN

 $C_{17}H_{35}*COOCa$ ➤ Jabones Calcicos : Insoluble en agua

- Contenido bajo de grasas
- •Alto contenido en aditamentos


PRODUCTO	BASE	CARACTERÍSTICA	VALORES
Ferrocapa 19T2	Sódico con aditivos	Material Graso	75.0 % min.
		Humedad	2.0 % max.
C-55 M	Cálcico con aditivos	Material Graso	66 a 72 %
		Humedad	2.0 % max.
Ferrocapa GS-50	Sódico con aditivos	Material Graso	80 a 85 %
		Humedad	2.0 % max.
Ferrocapa Q-80	N/A	Alcalinidad libre	1.5 Máximo
			mgKOH/g muestra
		Oleato de Potasio	35 a 40 %


CARACTERÍSTICA	PRODUCTO / ESPECIFICACIÓN			
CARACTERISTICA	VM8	V22M12	TR-50	
Base		Jabón sódico libre de	Jabón cálcico libre	
	aceite mineral	aceite mineral	de aceite mineral	
Contenido de grasa	72 - 77 %	75 - 80 %	31 - 42 %	
PH	9.8 - 10.3	10.7 - 11.7	12.1 - 12.6	
Humedad	< 3 %	< 3 %	< 3 %	



Mecanismos de lubricación:

a) Hidrodinámica

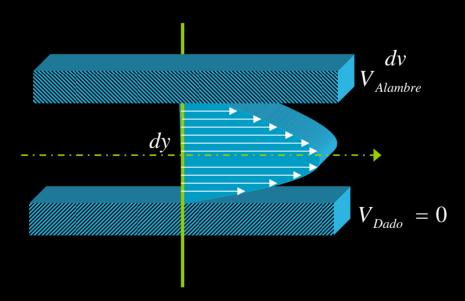
b) Límite

c) Mixta

LUBRICACIÓN	VENTAJAS	DESVENTAJAS
HIDRÓDINAMICA	REDUCCIÓN DESGASTE	EL ESPESOR DE LA
	AISLANTE TERMICO	PELÍCULA DEBE
	NO ES CORROSIVO	MANTENERSE
	FACIL DISPERSIÓN	CONSTANTE, POR
	ELEVADA LUBRICIDAD	EFECTOS DE
	FACIL REMOCIÓN	TEMPERATURA.
PELÍCULA LÍMITE	NO ES CORRROSIVO	ELEVA EL DESGASTE
		INCREMENTO DE
		TEMPERATURA
		DIFICIL REMOCIÓN
MIXTA	NO ES CORROSIVA	COMPLEJA
	MODERADA REMOCIÓN	DISPERSIÓN

Lubricación hidrodinámica F(x):

Viscosidad (μ)


Espesor de la película (dy)

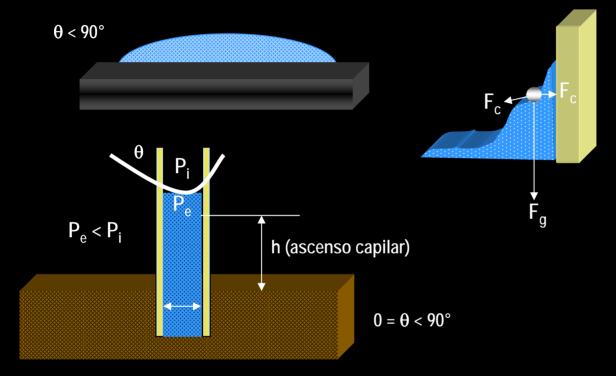
Velocidad de deformación (dv)

Principio:

Ley de Newton (líquidos Newtonianos ideales)

$$\tau = \mu * \frac{dv}{dy}$$

Acarreadores de lubricante


- Cal \longrightarrow Ca (OH)₂
- Bórax \longrightarrow $Na_2B_4O_7*5H_2O$
- Fosfatos $H_2PO_4^- + Zn^{2+}$
- Mezcla

 Hidróxido de Hierro + cal, fosfato + cal, bórax,
 Fosfato + bórax, cobre + cal, sales de bórax.

LUBRICACIÓN

Donde:

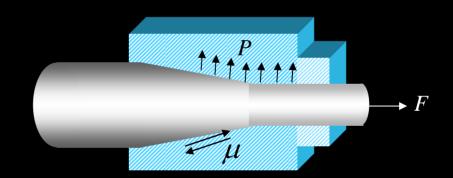
F_a = Fuerzas de Adhesión

F_c = Fuerzas de Cohesión

F_g = Fuerza de gravedad

Fuerzas de Cohesión del lubricante < Fuerzas de Adhesión en la interfase Dado- pieza

FRICCIÓN EN LA INTERFASE


Interfase Herramienta – metal

Fuerza opositora tangencial a la interfase (esfuerzos cortantes) común entre dos cuerpos, bajo la acción de una fuerza externa uno de los cuerpos se mueve sobre la superficie del otro.

Esfuerzos cortantes:

- a) Coeficiente de fricción (μ)
- b) El factor de corte de superficie (m)

$$\mu = \frac{F}{P} = \frac{\tau}{p}$$

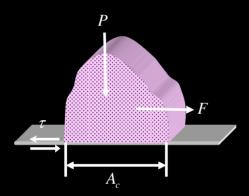
Donde:

F = Fuerza requerida para mover el cuerpo

P =Fuerza normal

 τ = Resistenci a al corte de la interfase

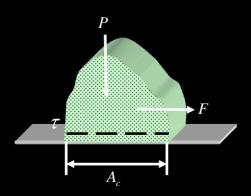
p = Presión de conformado normal a la superficie



FRICCIÓN EN LA INTERFASE

Mecanismos de interacción de dos superficies:

1) Mecanismo de fricción deslizante (Fricción de Coulomb)



$$\tau = \mu p < k$$

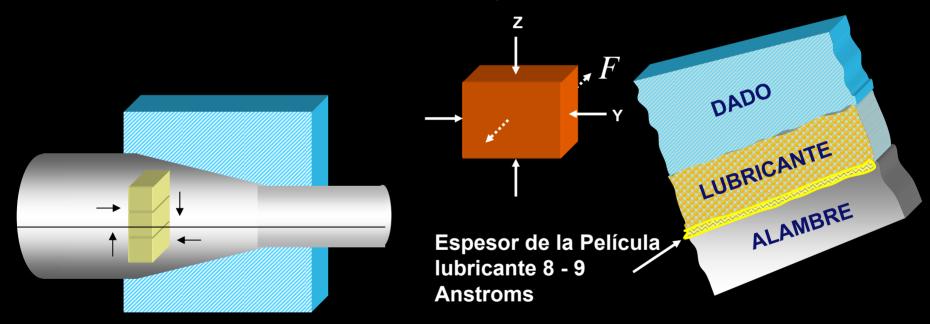
Donde:

k = es el esfuerzo de cedencia en corte de la interfase

2) Mecanismo de fricción adherente

 $\tau_i = \mu p \ge k$

 $\mu = 0.03 - 0.05$



FRICCIÓN EN LA INTERFASE

Efectos de la fricción:

- 1. Temperatura
- 2. Alteración en la distribución de flujo plástico

TRANSFERENCIA DE CALOR

Convección

Movimiento de moléculas de un punto a otro e intercambian energía con las moléculas que estaban en el otro punto.

Cuando hay convección ocurre un movimiento masivo de moléculas.

Convección natural: el movimiento masivo es inducido por cambios de densidad asociados con diferencias de temperatura en distintas partes del fluido, o con vaporización o condensación.

$$q = h A(T_m - T_s) h A\Delta T$$

TRANSFERENCIA DE CALOR

ı

Convección forzada: cuando el fluido es obligado a moverse por medios mecánicos.

La transferencia de calor por convección se mide como la tasa de intercambio de calor en la interfaz entre un fluido y un sólido.

$q = h A\Delta T = \Delta T / (1/ h A) = Potencia/Resistencia$

Donde:

A = área de la interfaz de contacto entre el fluido y el sólido

h = coeficiente de transferencia de calor, Watt/m².K

T_m = temperatura media del fluido

T_s = temperatura de la pared sólida

CONCLUSIONES

Un lubricante adecuado es el que cumple con:

- Disminución del desgaste en la pastilla de carburo de tungsteno
- Controlar la viscosidad para diminuir variables en el proceso.
- Disipación de calor adecuada durante el proceso
- Punto de fusión bajo (De acuerdo a Tp)
- Reactividad controlada
- Elevada lubricidad
- Fácil remoción
- Fácil dispersión
- Durabilidad de la película lubricante

"Ya estoy demasiado viejo y cansado para el estudio de diseño, pero me encuentro optimista; para el estudio de flujos turbulentos podría morirme y esperar a que el

cielo me ilumine ...'

