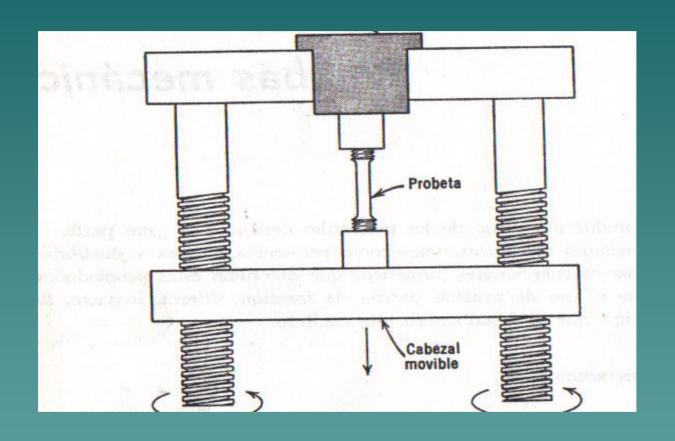
TEORÍA SOBRE TREFILADO

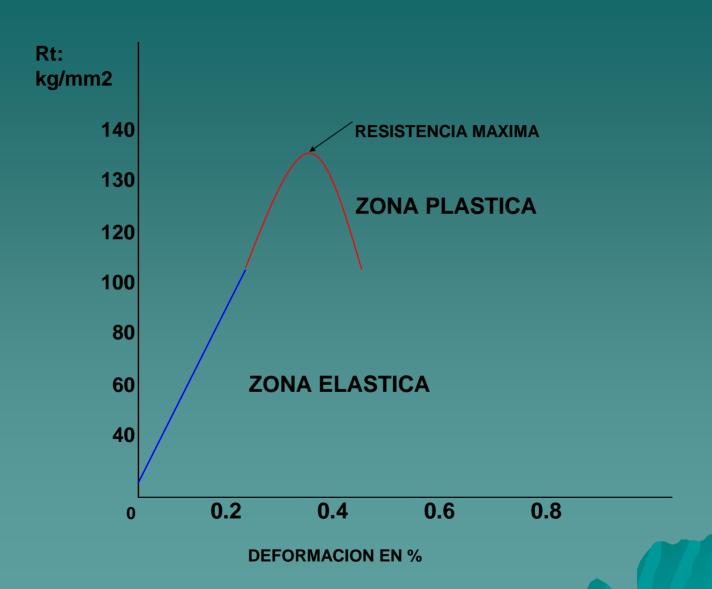
Ing. Rubén Loza Barillas

TEORIA SOBRE TREFILADO

a) Resistencia a la tensión: Es la aplicación de una fuerza sobre el área de la muestra de alambre.


$$\mathsf{Rt} = \frac{Fza}{Area}$$

DONDE:


Rt= Resistencia a la tensión lbs/plg², kg/mm², etc

Fza=Carga aplicada a la muestra lbs, kg, etc Area= Area de la muestra plg². mm²

MAQUINA DE TENSION

DIAGRAMA ESFUERZO DEFORMACION

VARIABLES QUE AFECTAN LA RESISTENCIA A LA TENSION DEL ALAMBRE :

a) PORCIENTO DE REDUCCION DE AREA : Es la reducción de la sección transversal del alambre después del proceso de trefilado y se expresa en porciento %:

$$\% RA = \left[1 - \left(\frac{df}{Di}\right)^2\right] x 100$$

Ejemplo: df= 0.125" Di= 0.218" %Ra= 67%

PORCENTAJES DE REDUCCION DE AREA POR PASO PARA

ACERO BAJO CARBONO

REDUCCION MAX/MIN

MAX. 34% MIN. 15%

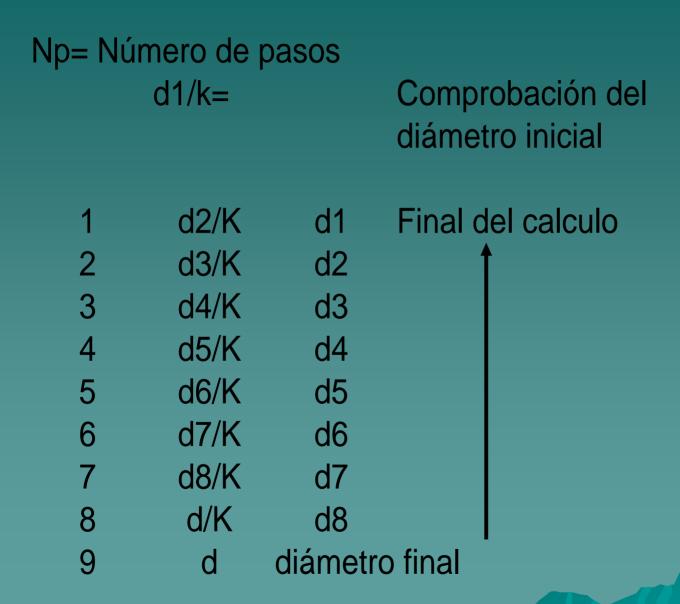
ACERO ALTO CARBONO

REDUCCION MAX/MIN.

MAX.27% MIN. 16%

 b) VELOCIDAD DE TRABAJO: Al incrementar la velocidad aumentamos la Resistencia a la Tensión

- c) TRATAMIENTO TERMICO: Recocido industrial, Patentado en plomo, Normalizado, etc
- d) COMPOSICION QUIMICA DEL ACERO


NUMERO DE PASOS CALCULO PARA ENCONTRAR EL NUMERO DE PASOS

$$= \frac{2 \ln \frac{df}{Di}}{0.26}$$

$$= Np \left| \frac{df}{Di} \right|$$

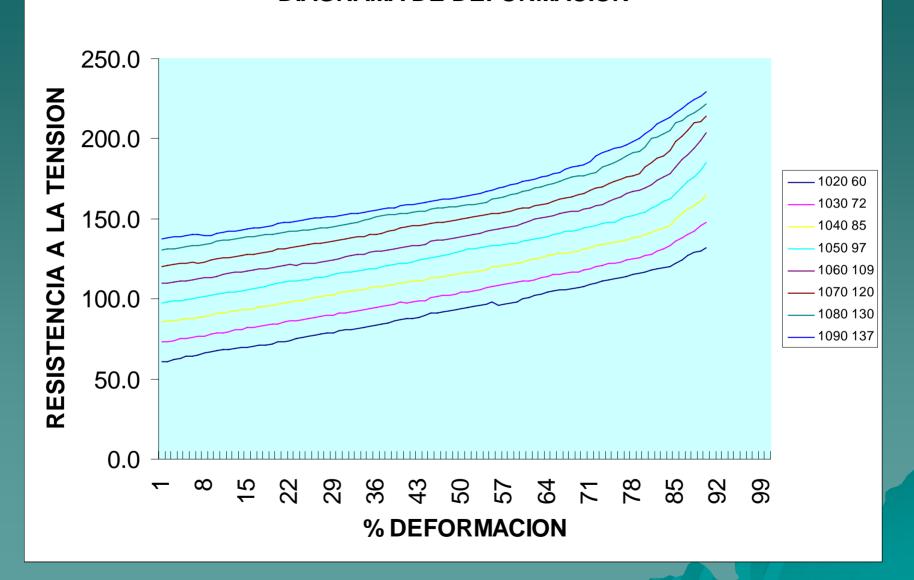
%Rap=(K²-1)100 Porciento de reducción por paso.

SECUENCIA PARA EL CALCULO DE UNA SERIE NORMAL

CALCULO DE SERIES NORMALES				
MAQUINA 1				
D =	0.250			
d =	0.086			
No. PASOS	7			
% REDT	88%			
No.PASOS	DADOS	%RAp	%REDT	
1	0.2147	26.3%	26%	
2	0.1843	26.3%	46%	
3	0.1582	26.3%	60%	
4	0.1359	26.3%	70%	
5	0.1167	26.3%	78%	
6	0.1002	26.3%	84%	
7	0.0860	26.3%	88%	

CALCULO DE SERIES NORMALES				
MAQUINA 2				
D =	0.250			
d =	0.086			
No. PASOS	8			
% REDT	88%			
SERIE	DADOS	%RAp	%REDT	
1	0.2188	23.4%	23%	
2	0.1915	23.4%	41%	
3	0.1676	23.4%	55%	
4	0.1466	23.4%	66%	
5	0.1283	23.4%	74%	
6	0.1123	23.4%	80%	
7	0.0983	23.4%	85%	
8	0.0860	23.4%	88%	

CALCULO DE SERIES NORMALES				
MAQUINA 3				
D =	0.250			
d =	0.086			
No. PASOS	9			
% REDT	88%			
SERIE	DADOS	%RAp	%REDT	
1	0.2220	21.1%	21%	
2	0.1972	21.1%	38%	
3	0.1752	21.1%	51%	
4	0.1556	21.1%	61%	
5	0.1382	21.1%	69%	
6	0.1227	21.1%	76%	
7	0.1090	21.1%	81%	
8	0.0968	21.1%	85%	
9	0.0860	21.1%	88%	


CALCULO DE SERIES NORMALES				
MAQUINA 4				
D =	0.250			
d =	0.086			
No. PASOS	10			
% REDT	88%			
SERIE	DADOS	%RAp	%REDT	
1	0.2247	19.2%	19%	
2	0.2020	19.2%	35%	
3	0.1815	19.2%	47%	
4	0.1631	19.2%	57%	
5	0.1466	19.2%	66%	
6	0.1318	19.2%	72%	
7	0.1184	19.2%	78%	
8	0.1065	19.2%	82%	
9	0.0957	19.2%	85%	
10	0.0860	19.2%	88%	

EFECTO DEL CONTENIDO DE CARBONO.

El carbono es el principal elemento químico en el acero. Al incrementar el contenido de Carbono en el acero aumentara la resistencia a la tensión pero disminuye la ductilidad. Los aceros al carbono se identifican por su nomenclatura 10xx. Ejemplo:

1010 los dos primero dígitos indican que es un acero al carbono, los dos últimos dígitos indican el porcentaje de carbono contenido en el acero.

DIAGRAMA DE DEFORMACION

El diagrama anterior muestra para cada tipo de acero el incremento de la resistencia a la tensión conforme aumenta la reducción total en el material

Las reducciones totales arriba del 85% para aceros de medio y alto carbono disminuyen las propiedades mecánicas en en el acero como la ductilidad, torsiones, dobleces, etc.

Preparo Ing. Rubén Loza Barillas